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ABSTRACT 

The possibility of deploying unmanned aerial vehicles (UAV) for smart city applications has sparked great interest in recent times.  

High-density cities like Hong Kong, Tokyo and New York have been moving forward to automation to lighten the load of the cities, 

as well as to provide a time saving, yet safe environment for their citizens. Simulating such UAV activities before practical 
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implementation has therefore turned into a necessity. However, simulation of cities through traditional methods do not replicate the 

real-life errors in navigation caused by high-density tall buildings, variable wind speed, GNSS sensor measurement errors and other 

factors. In our research, we have built a new simulator named UnmannedSim which utilizes popular existing software packages 

such as AirSim and Unreal Engine while adding real-life errors to the simulator. 

1. INTRODUCTION 

In recent years, unmanned aerial vehicles (UAVs) have brought great benefits to many different industries and will soon become the 

main component of urban air traffic. UAVs have played a key role in supporting upcoming smart cities to be safe and efficient. They 

can help build a myriad of smart applications including but not limited to traffic management, pollution monitoring, performing 

deliveries and other IoT applications [1].  

Before implementing real-life applications, experiments need to be conducted to ensure the proper operation of the UAVs. Since the 

real-life testing of UAVs can be risky, costly and time-consuming, a simulation system is a more efficient way to detect malfunctions 

while avoiding unnecessary costs, and accidents during testing [2].  

Several literatures exist on 3D dynamic simulators designed specifically for UAVs. The X-Plane simulator has been used in UAV 

testing [3]. While the simulator investigates multi-UAV system implementation and various realistic drone movements, the research 

does not show any navigation or positioning system developed to simulate real-world errors. AirSim is an API developed by 

Microsoft for UAV simulation in Unreal Engine. AirSim has various features built-in for computer vision and deep learning [4]. 

While it takes real-life physics into account such as gravity, environment and drag, it misses out in considering Global Navigation 

Satellite System (GNSS) and computational fluid dynamics (CFD) error due to buildings and infrastructure. 

There are many other simulators with the same functions such as Gazebo, USARSim and OpenSim developed to accelerate research 

in autonomous UAVs. These UAV simulators create an environment for UAVs to fly in, allowing a multitude of sensors to be 

simulated such as IMU, cameras, lidars etc. However, these sensors are complicated and are influenced by many external factors, 

such as buildings, wind, light, weather, dynamic objects, etc. These factors are not present in these simulators but are crucial to the 

safety of navigation algorithms in a complex urban environment.  

 A key problem of implementing UAVs in cities is that in high-density regions, navigating around buildings become more difficult, 

which may lead to higher safety risks. In urban areas, GNSS positioning usually experiences non-line-of-sight (NLOS) or heavy 

multipath effects, which could severely degrade localization accuracy of about 50 meters [5].  

Our main target for this paper can be summarized as: 

1. Creation of a simulation environment based on digital 3D models of the Hong Kong Polytechnic University using Unreal 

Engine. 

2. Application of the state-of-the-art GNSS urban simulator into AirSim to consider the multipath and NLOS effects in urban 

environments for UAVs. 

3. Application of the computational fluid dynamics of the wind into AirSim to consider the wind effects in urban environments 

for UAVs. 

4. Creation of digital pedestrians and objects of interest to simulate the bustling university campus environment. 

 

With these contributions, the UnmannedSim can be directly used for urban UAV research, especially for the challenges of 

autonomous UAVs in smart urban environments. 
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2. THE HONG KONG POLYTECHNIC UNIVERSITY ENVIRONMENT 

The proposed method for creating such a simulation was by utilizing some of the existing simulation tools. One of the most popular 

UAV simulation tools available is AirSim, an open-source simulator plugin built on Unreal Engine (UE4). 

AirSim provides accurate physics simulation of lightweight multirotor crafts and enables different sensor simulations for UAVs [4]. 

It also allows Hardware-In-Loop (HIL) simulation, whereby an actual flight controller is connected to and interacts with the simulator 

via the computer. HIL is an important feature to test the hardware and software capability of a UAV since it could provide the 

simulator with the data needed, thus properly simulating a UAV that can perform complicated real-life functions. Common flight 

controllers like Pixhawk 4 and ArduPilot are supported by AirSim.  

Unreal Engine is the visual rendering platform used by AirSim. It is capable of handling object collision and real-time ray tracing, 

providing a photorealistic rendering in the simulator. Photorealistic environment rendering gives an immersive experience, which is 

essential for different future applications of the simulator such as pilot training and computer vision training. As AirSim provides 

much of the necessities for a UAV simulator in an urban environment, it was adopted for the development of this project. While 

AirSim provides an accurate simulation of the flight mechanism of a multirotor UAV and sensors, the collision and environment 

rendering are handled by the Unreal Engine.  

To simulate an urban environment, a 3D cityscape model from the Hong Kong Land Department was applied and modified. To limit 

the computing resources needed for the simulator, only the main campus of the Hong Kong Polytechnic University (PolyU) and its 

surrounding area are imported. 

3. EXPANSION OF SIMULATED GNSS TO CONSIDER MULTIPATH/NLOS  

To simulate GNSS error in the simulator, a PX4 controller was used in Hardware in Loop (HIL) setup. The hardware setup consisted 

of a companion computer connected with a Pixhawk 4 Flight Controller. The PX4 was then connected to a Windows PC which ran 

a simulation of The Hong Kong Polytechnic University campus in Unreal Engine. To perform complex calculations, a central 

computer was connected to the companion computer via Wi-Fi. The UAV can be controlled using QGroundControl software installed 

in any device - from a simple laptop to a smartphone - that is connected to the same network as the companion computer. A visual 

representation of all connected hardware is shown below: 

  

Fig 1: Flowchart of the sensor simulation in UnmmanedSim 
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In order to modify sensor data in real-time, ROS python scripts were used to deliver and exchange messages through different topics. 

For this research, Ubuntu 18.04 and ROS1 Melodic were installed in the companion computer. The companion computer can be 

accessed from any device within the same network. 

3.1. Calculating GNSS Navigation Error 

 

 Fig 2: GNSS Error Model [6] 

The GNSS navigation error simulation is shown in Fig 2. The model considers Multipath & NLOS and provides Pseudorange /C/N0 

and Doppler frequency[6]. The algorithm is written in Matlab which takes the ground truth latitude and longitude outputted by Unreal 

Engine as input for the GNSS error simulator. Due to the high computational requirement of the GNSS error calculating algorithm, 

a central computer is used to process the high workload and pass data to the companion computer. With a central computer processing 

the data, a frequency of positioning data update is set to 0.5 Hz. This value can be increased based on the capability of the central 

computer. 

4. APPLICATION OF THE COMPUTATIONAL FLUID DYNAMICS 

In the original AirSim, wind can be added into the physics simulation by setting the wind magnitude and direction in the simulator’s 

weather menu or by using an AirSim API. The limitation of this approach is that the wind velocity is fixed across the whole simulation 

environment. In an urban environment with tall buildings, the airflow is affected by various phenomena, resulting in the variation of 

airflow magnitude and direction across the city. To simulate such behaviour, a computational fluid dynamic (CFD) simulation of a 

steady air flow through the PolyU campus was carried out. 
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Fig 3: Computational Domain and Boundary conditions 

Fig 3 shows the computational domain and the boundary condition adopted in this study. At the domain inlet, a power-law velocity 

profile is applied as follows, 

 

𝑈(𝑧) = 𝑈𝑟𝑒𝑓 (
𝑧

𝑧𝑟𝑒𝑓
)
𝛼

 (1) 

𝑘(𝑧) = (𝑈(𝑧) × 𝐼𝑖𝑛)
2 (2) 

𝜀(𝑧) =
𝐶𝜇
3/4

𝑘(𝑧)3/2

𝜅𝑧
, (3) 

 

where zref is the reference height (= 20 [m]), α is the power-law exponent (= 0.22, stands for the underlying surface roughness above 

medium-dense urban area), Iin is the turbulent intensity (= 0.1) [7], 𝜿 is the von Karman’s constant (= 0.42), and 𝐶𝜇 is the model 

constant (= 0.085). Moreover, Uref is the reference wind speed (= 3 [m/s]), the reference Reynolds number (𝑅𝑒 = 𝑈𝑟𝑒𝑓𝐻/𝑣) is about 

4.1 × 106, which is far larger than 11,000 to satisfy the requirement of Reynolds number independence [8].  The top and lateral 

boundaries of the domain are set as symmetry boundaries, namely setting normal velocity and normal gradients of all variables to 

zero. On the outlet of the domain, a zero diffusive flux is imposed for all flow variables in the direction normal to the outflow plane 

since the domain downstream is long enough to ensure a fully developed outlet flow. For the near-wall treatment, no-slip wall 

boundary conditions with the standard wall function are applied. The analyses are based on the steady-state 3D Reynolds-Averaged 

Navier–Stokes (RANS) conservation equations of mass and momentum for the incompressible turbulent flow. The governing 

equations are as follows: 

 

Continuity equation: 

 
𝜕(𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0 (4) 

Momentum equation: 

 
𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
 (5) 

where the stress tensor  is defined as: 

 𝜏𝑖𝑗 = 𝜌 [𝑣𝑡 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)] −

2

3
𝜌𝑘𝛿𝑖𝑗, (6) 

where the term ui denotes the i-axis component of the air velocity; p and ρ represent the pressure and density;  is the turbulent 

kinematic viscosity; δij is the Kronecker delta; k is the turbulence kinetic energy.  

ij

t
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The renormalization group (RNG) k-ε model [9] is chosen because of its generally good performance in predicting the flow separation 

by buildings and reversed flow. In addition, the RNG k-ε model complements the disadvantage of the standard k-ε model, which 

overestimates turbulent kinetic energy near the edges of buildings where ambient flow impinges and separates [10]. The conservation 

equations of the RNG k-ε turbulence model for the turbulence kinetic energy (k) and dissipation rate (ε) are as follows: 

 
𝜕𝑢𝑗𝑘

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(
𝑣𝑡

𝜎𝑘

𝜕𝑘

𝜕𝑥𝑗
) + 𝑃𝑘 − 𝜀 (7) 

 

 
𝜕𝑢𝑗𝜀

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(
𝑣𝑡

𝜎𝜀

𝜕𝜀

𝜕𝑥𝑗
) +

𝜀

𝑘
(𝐶𝜀1

∗ 𝑃𝑘 − 𝐶𝜀2𝜀). (8) 

In this equation, 

𝑃𝑘 = 𝑣𝑡𝑆
2 , 𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗   𝑆𝑖𝑗 =

1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)  , 𝑣𝑡 = 𝐶𝜇

𝑘2

𝜀
 , 𝜎𝑘 = 1 , 𝐶𝜀1

∗ = 1.42 −
𝜂(1−𝜂/4.38)

1+0.012𝜂3
 , 𝜂 =

𝑘

𝜀
𝑆 , 𝐶𝜀2 = 1.68  and 

𝜎𝜀 = 0.719. 

 
Fig 4: CFD result for the velocity of wind passing through PolyU campus 

 

The result of the CFD simulation as shown in Fig 4 is exported as a series of tables, containing coordinates with its respective 3D 

vector wind. Each table corresponds to a specific altitude. To implement the CFD data into the simulation, a Python API script is 

used to change the wind direction in real-time.  

When running the CFD in the UAV simulation, the API script first gets the ground truth position of the UAV in the simulator. After 

the position is returned, the scripts will load the CFD wind vector into the simulator. The process of getting the position and searching 

of the CFD data is put into a loop so that the wind magnitude and direction change according to how the CFD is simulated as the 

UAV changes position. The change in wind is real-time as the interval between each loop is very small. 

5. CREATION OF DIGITAL PEDESTRIANS AND OBJECTS TO GENERATE SIMULATED DATA  

Simulating digital pedestrian is an important part in the urban UAV simulaion. A dynamic pedestrian system is implemented in the 

UE4 environment to simulate people walking around the campus area as shown in Fig 5. The animated human models are obtained 

from the Adobe Maximo portfolio[11] and are controlled using UE4 blueprints. The dynamic pedestrian system can be used for 

developing UAV tools such as dynamic object avoidance and computer vision for crowd control.  
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Other dynamic objects such as road vehicles, aircrafts and wildlife can be added as well to provide a realistic and immersive 

simulation of an urban environment.   

 
Fig 5: Dynamic pedestrians in the simulated environment 

 

5.1. Designing The Unmanned Aerial Vehicle 

A 3D model of a PX4 vision autonomy development kit UAV was used in the simulation. The model was developed in Autodesk 

3ds Max and then imported into Unreal Engine as shown in Fig 6.  

 
Fig 6: The Vehicle Model 

One potential application of this UAV simulator is pilot training. To increase situational awareness and provide the necessary 

information to fly a drone, a Head-up Display (HUD) is added to the vehicle model in the simulator as shown in Fig 7. When the 

First-Person View (FPV) camera is used, a HUD with an indication of airspeed, altitude, heading, and an artificial horizon is shown, 

and a bird-eye view over the vehicle is also shown in the FPV for precision landing. 
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Fig 7: Head-up Display (HUD) in First-Person View (FPV) 

6. RESULTS AND ANALYSIS 

6.1. Process: 

We examined the simulated sensor data quantitively. We observed real and simulated sensor data side-by-side. Positioning data was 

collected at different scenarios using a conventional GPS kit of model U-Blox M8. The same path was then followed in a traditional 

simulator and our UnmannedSim and the corresponding positioning data were collected. 

6.2. Quantitative Tests 

 

Fig 8: Ground Truth, Current Simulators, GNSS Error Simulation and U-Blox M8 Data Comparison. 
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Table 1: Ground Truth, Current Simulators, GNSS Error Simulation and U-Blox M8 Data Comparison. 

Real-Life 

GNSS Error/m 

Simulated 

GNSS Error/m 

GNSS Error 

Difference/m 

24.0 23.7 0.3 

 

Table 1 shows current simulators can only provide ground truth GNSS estimates. In contrast, when the GNSS sensor data is collected 

in real-life at the same location using a U-Blox M8 GPS kit, a significant difference between the ground truth position and U-Blox 

position data can be observed. The error found was approximately 24m. In real-world urban applications, a distance of 24m may 

result in safety and operational issues. Using the GNSS error simulation, the output coordinate is within 0.3m to the position data 

collected from U-Blox M8. 

The data of a fixed trajectory/path collected using Ublox M-8, traditional simulator and our UnmannedSim (Simulator with GNSS 

error) are plotted for visual representation below: 

 

Fig 9: Trajectory Data Comparison 

It can be observed from Fig 9 that the traditional simulator has a significant difference in positioning compared to real-world data 

collected using U-Blox M8. However, the pose data from UnmannedSim with GNSS error simulation displays a trajectory close to 

the real-world data from U-Blox M8.  

7. CONCLUSION 

In conclusion, we present UnmmanedSim, a new simulation environment and sensor data augmentation built specifically for urban 

environments. UnmannedSim is able to use existing models of AirSim and implement a layer of GNSS and CFD error to replicate 

real-world sensor errors. The addition of these errors makes the simulator highly desirable for UAV testing for smart city applications. 

UnmannedSim integrates different popular existing infrastructures such as Unreal Engine and AirSim along with its own error 

simulation techniques that open endless possibilities for urban UAV application development. 
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8. APPLICATIONS 

UnmannedSim can be applied to a wide range of applications. The simulator can be used to generate data to train deep learning 

models which is beneficial for different applications of UAVs such as Search and Rescue, where real-world training data is very 

difficult to receive. 

The UnmannedSim can also be used to test various smart city applications such as traffic and weather monitoring. The testing of 

these applications in a real-world scenario is very difficult and UnmannedSim introduces a safe, accurate and efficient alternative. 

Due to real-world error simulating capabilities, the UnmannedSim can be a very good option to train drone pilots compared to 

traditional simulators. UnmannedSim is based on modules, and it is very easy to import a 3D model of any location with very few 

modifications. This option makes it an ideal candidate for drone pilot training in any terrain set up around the globe. 

9. LIMITATIONS 

The research had a set of limitations that might have prevented us from further experimentation and collection of more precise 

information. Our simulator contained a 3D model of The Hong Kong Polytechnic University campus only compared to a larger 3D 

map. This decision was taken due to hardware limitations and the complexity of a complete urban model.  

In addition to this, the Computational Fluid Dynamics data contained wind data for a fixed range of heights: from 1m to 110m. 

Furthermore, the wind dataset is only available for every meter of height. Such a simple dataset was used because it could easily be 

used to develop algorithms for wind data manipulation. However, it should be noted that with minor modifications, the algorithm 

can be made to work with any division of height instead of 1m. 

A frequency of 0.5 Hz had been set for the pose data update. Such a frequency was chosen due to hardware limitations. A frequency 

of 0.5 Hz ensures that the data is processed in real-time. This frequency also maintains a perfect balance between the UAV movement 

in the simulator and pose output by the GNSS error calculating algorithm. A more capable hardware system can be used to overcome 

this limitation. As the complex process is performed in a central computer, instead of the companion computer of the UAV, the 

hardware upgrade is much easier to implement without the need for any high-level testing for compatibility. 

 

10. FURTHER RESEARCH 

UnmannedSim can be developed further by integrating additional features to it. One such feature includes implementing a weather 

mode based on geolocation. This will let UnmannedSim to be used for the testing of various smart city applications based on the 

weather pattern of a particular city. 

A visual and audio warning system can be built into UnmannedSim. Warnings can notify drone pilots when they are flying out of 

range or are unable to follow their mission properly 

There is also a possibility to include dynamic path planning in UnmannedSim. An implementation of such a system can further 

increase UnmannedSim’s potential to be used as a complete drone pilot training simulator. 
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